let $r$ be the
proposition "It
rains,"
let $f$ be the
proposition "It is
foggy,"
let $s$ be the
proposition "The sailing race
will be held,"
let $l$ be the
proposition "The life saving
demonstration will go on",
let $t$ be the
proposition "The trophy will
be awarded."
Premises:
$(\neg r \vee \neg f) \to (s \wedge l)$
$s→t$
$\neg t$
| Step |
Statement |
Reason |
| 1 |
$\neg t$ |
Hypothesis |
| 2 |
$s \to t$ |
Hypothesis |
| 3 |
$\neg s$ |
Modus tollens using (1) and (2) |
| 4 |
$(\neg r \lor \neg f) \rightarrow (s \land l)$ |
Hypothesis |
| 5 |
$(\neg(s \land l))\rightarrow \neg(\neg r \lor \neg f)$ |
Contrapositive of (4) |
| 6 |
$(\neg s \lor \neg l)\rightarrow (r \land f)$ |
De Morgan's law and double negative |
| 7 |
$\neg s \lor \neg l$ |
Addition, using (3) |
| 8 |
$r \land f$ |
Modus ponens using (6) and (7) |
| 9 |
$r$ |
Simplification using (8) |