How many solutions are there to the equation
\begin{eqnarray*}
x_1 + x_2 + x_3 + x_4 + x_5+ x_6= 29,
\end{eqnarray*}
where $x_i$, $i$ = 1, 2, 3, 4, 5, 6, is a nonnegative integer such that
- $x_i > 1$ for $i$ = 1, 2, 3, 4, 5, 6 ?
- $x_1 \ge 1$, $x_2 \ge 2$, $x_3 \ge 3$, $x_4 \ge 4$, $x_5 > 5$, and $x_6 \ge 6$ ?
- $x_1 \le 5$ ?
- $x_1 < 8$ and $x_2 > 8$ ?